open/close

The BrazeTec BlueBraze brazing alloys are currently still not listed in any standard. But this is not surprising when you consider that a standardization process can take up to 5 years. Thus, new developments can never be standardised.

In the development of BrazeTec BlueBraze, the utmost importance was attached to selecting only alloying elements, which are already used in brazing alloys.

The manufacturing tolerances from ISO 17672 (the international standard for brazing alloys) have also been adopted.

Inclusion in the standard is being sought and this is also being advanced through our membership in national and international standards committees

As described, the composition of the BrazeTec BlueBraze brazing alloys are not listed in any standard for brazing alloys. They comply instead to our internal quality requirements for non-standardised materials – the BrazeTec Standard.

The BrazeTec Standard uses the requirements of the standard DIN EN ISO 17672 with regard to the composition, designation, chemical analysis, dimensions, quality and labeling.

The following tolerances for the given compositions of BrazeTec BlueBraze are specified: 

Ag ± 1.0 %
Cu ± 1.0 %
In ± 0.5 %
Mn ± 1.0 %
Ni ± 0.5 %
Sn ± 0.5 %
Si ± 0.1 %
Zn ± 2.0 %

The permitted impurity levels for BrazeTec BlueBraze comply with DIN EN ISO 17672 Table 6 – Group Ag: silver brazing alloys.

No, BrazeTec BlueBraze does not contain cadmium. 

The aim when developing the new products was to abandon the use of cadmium and other hazardous elements. Also, rare earths, etc. are not used.

Notice with regard to the European Union:

Since December 2011, cadmium-containing brazing alloys may no longer be used in the European Union. According to Article 3 of the REACH Regulation 1907/2006, the term "use" includes the processing, formulation, consumption, storage, holding in readiness, treatment, filling into containers, transfer from one container to another, mixing, production of an article or any other form of utilization.

The RoHS Directive 2011/65/EU dated 08JUN2011 restricts the use of certain hazardous substances in electrical and electronic equipment. Therefore, BrazeTec BlueBraze does not fall within the immediate scope of the RoHS, as brazing alloys are not electrical and/or electronic equipment.

Regardless of this, we can confirm that BrazeTec BlueBraze does not contain any of the substances listed in Annex II of the Directive 2011/65/EU.

BrazeTec BlueBraze does not fall directly within the immediate scope of the REACH Regulation.

REACH stands for Registration, Evaluation and Authorization of Chemicals. This is an EU chemicals regulation intended to centralise and simplify the law governing chemicals within Europe.

Like most brazing materials, the BrazeTec BlueBraze products are alloys and thus mixtures of several elements. Only the individual alloying elements (substances) fall within the scope of REACH. Umicore BrazeTec satisfies the REACH requirements for all materials used in the respective products, such as in communications along the supply chain, pre-registration and registration of substances and participation in consortia and the SIEF.

IIn the areas of health, safety and the environment, there are no changes compared to standard brazing alloys.

In processing, the usual national legislation for limiting exposure to metals (e.g. vapours) should be known and observed. The national limits for occupational exposure to alloying elements are listed in the safety data sheet in section 8.

 
 
 
Compared to standard conditions for BrazeTec 
 


More information Quotation

Address


Company*

Department

Gender*

Surename

Name*

Phone*

E-mail*

Street

Nr.

Postal code

City

Comment*mandatory

Product






 
 
 
 
 
 
Compared to standard conditions for BrazeTec 
4576
 

=
Security code. Please enter the total sum.

Silver brazing alloys, cadmium free in comparison: BrazeTec Bluebraze 2410 vs. Standard BrazeTec 3476

BrazeTec BlueBraze 2410

Composition in wt.%
Ag: 24 | Cu: 43.7 | Zn: 20 | Sn: 2 | Mn: 10 | Si: 0.3

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
Not applicable, Why?

Melting range acc. to DSC measurement in °C
690 – 750

Brazing temperature min. in °C
750

Tensile strength acc. to DIN EN 12797 in MPa
on S 235: 330 | on E 295: 480

Density in g/cm³
8.4

Maximum elongation at break A 100 in %
17

Electrical conductivity in m/Ωmm²
2.4

 

Less silver
–10 wt.%









Same
temperature

More brazing alloy
+5.5 %
+3.6 m/kg
 
Less costs

Quotation

Wire/Rod Ø 1.5 mm
Standard BrazeTec 3476

Composition in wt.%
Ag: 34 | Cu: 36 | Zn: 27.5 | Sn: 2.5 | Mn: – | Si: –

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.050

Overall impurity max. in wt.% 
0.15

Melting range acc. to ISO 17672 in °C
630 – 730

Melting range acc. to DSC measurement in °C
655 – 745

Brazing temperature min. in °C
745

Tensile strength acc. to DIN EN 12797 in MPa
on S 235: 360 | on E 295: 480

Density in g/cm³
8.9

Maximum elongation at break A 100 %
11

Electrical conductivity in m/Ωmm²
14.0

 

Silver brazing alloys, cadmium free in comparison: BrazeTec Bluebraze 2010 vs. Standard BrazeTec 3076

BrazeTec BlueBraze 2010

Composition in wt.%
Ag: 20 | Cu: 42.8 | Zn: 25 | Mn: 10 | Sn: – | In: 2 | Si: 0.3

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
Not applicable, Why?

Melting range acc. to DSC measurement in °C
710 – 765

Brazing temperature min. in °C
765

Tensile strength acc. to DIN EN 12797 in MPa
on S 235: 300 | on E 295: 440

Density in g/cm&sup3
8.3

Maximum elongation at break A 100 in %
17

Electrical conductivity in m/Ωmm&sup2
2.7

 

Less silver
–10 wt.%









Same
temperature

More brazing alloy
+5.7 %
+3.9 m/kg
 
Less costs

Quotation

Wire/Rod Ø 1.5 mm
Standard BrazeTec 3076

Composition in wt.%
Ag: 30 | Cu: 36 | Zn: 32 | Mn: – | Sn: 2 | In: – | Si: –

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.050

Overall impurity max. in wt.% 
0.15

Melting range acc. to ISO 17672 in °C
665 – 755

Melting range acc. to DSC measurement in °C
675 – 760

Brazing temperature min. in °C
760

Tensile strength acc. to DIN EN 12797 in MPa
on S 235: 360 | on E 295: 480

Density in g/cm&sup3
8.8

Maximum elongation at break A 100 %
11

Electrical conductivity in m/Ωmm&sup2
12.0

 

Silver brazing alloys, cadmium free in comparison: BrazeTec Bluebraze 3510 vs. Standard BrazeTec 4576

BrazeTec BlueBraze 3510

Composition in wt.%
Ag: 35 | Cu: 32.6 | Zn: 20 | Sn: 2 | Mn: 10 | Si: 0.4

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
Not applicable, Why?

Melting range acc. to DSC measurement in °C
680 – 700

Brazing temperature min. in °C
700

Tensile strength acc. to DIN EN 12797 in MPa
on S 235: 320 | on E 295: 420

Density in g/cm³
8.6

Maximum elongation at break A 100 in %
14

Electrical conductivity in m/Ωmm²
2.4

 

Less silver
–10 wt.%









Same
temperature

More brazing alloy
+5.5 %
+3.6 m/kg
 
Less costs

Quotation

Wire/Rod Ø 1.5 mm
Standard BrazeTec 4576

Composition in wt.%
Ag: 45 | Cu: 27 | Zn: 25.5 | Sn: 2.5 | Mn: – | Si: –

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.050

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
640 – 680

Melting range acc. to DSC measurement in °C
645 – 695

Brazing temperature min. in °C
695

Tensile strength acc. to DIN EN 12797 in MPa
on S 235: 350 | on E 295: 430

Density in g/cm³
9.1

Maximum elongation at break A 100 in %
23

Electrical conductivity in m/Ωmm²
13.0

 

Silver brazing alloys, cadmium free in comparison: BrazeTec Bluebraze 3010 vs. Standard BrazeTec 4076

BrazeTec BlueBraze 3010

Composition in wt.%
Ag: 30 | Cu: 37.8 | Zn: 20 | Mn: 10 | Sn: 2 | Si: 0.2

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
Not applicable, Why?

Melting range acc. to DSC measurement in °C
690 – 730

Brazing temperature min. in °C
730

Tensile strength acc. to DIN EN 12797 in MPa
on S 235: 350 | on E 295: 440

Density in g/cm³
8.4

Maximum elongation at break A 100 in %
14

Electrical conductivity in m/Ωmm²
2.4

 

Less silver
–10 wt.%









Same
temperature

More brazing alloy
+6.7 %
+4.5 m/kg
 
Less costs

Quotation

Wire/Rod Ø 1.5 mm
Standard BrazeTec 4076

Composition in wt.%
Ag: 40 | Cu: 30 | Zn: 28 | Mn: – | Sn: 2 | Si: –

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.050

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
650 – 710

Melting range acc. to DSC measurement in °C
665 – 725

Brazing temperature min. in °C
725

Tensile strength acc. to DIN EN 12797 in MPa
on S 235: 350 | on E 295: 430

Density in g/cm³
9.0

Maximum elongation at break A 100 in %
23

Electrical conductivity in m/Ωmm²
11.0

 

Silver brazing alloys, cadmium free in comparison: BrazeTec Bluebraze 2810 vs. Standard BrazeTec 4900

BrazeTec BlueBraze 2810

Composition in wt.%
Ag: 28 | Cu: 39.0 | Zn: 20 | Mn: 10 | Ni: 1 | In: 2

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.05

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
Not applicable, Why?

Melting range acc. to DSC measurement in °C
680 – 760

Brazing temperature min. in °C
710

Shear strength¹ acc. to DIN EN 12797 in MPa
> 250

Density in g/cm³
8.5

 

 

1) Measured according to BrazeTec standard, compound 1.2210 & K10

Less Silver
–21 wt. %










Same
Strength

More Brazing Alloy
+4.2 %
 
Less
Costs

Quatation

.
Standard BrazeTec 4900

Composition in wt.%
Ag: 49 | Cu: 16 | Zn: 23 | Mn: 7.5 | NI: 4.5 | In: –

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.05

Overall impurity max. in wt.%
0.3

Melting range acc. to ISO 17672 in °C
680 – 705

Melting range acc. to DSC measurement in °C
680 – 705

Brazing temperature min. in °C
690

Shear strength¹ acc. to DIN EN 12797 in MPa
> 250

Density in g/cm³
8.9

 

 


Silver brazing alloys, cadmium free in comparison: BrazeTec Bluebraze 2810 vs. Standard BrazeTec 5081

BrazeTec BlueBraze 2810

Composition in wt.%
Ag: 28 | Cu: 39.0 | Zn: 20 | Mn: 10 | Ni: 1 | In: 2

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.05

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
Not applicable, Why?

Melting range acc. to DSC measurement in °C
680 – 760

Brazing temperature min. in °C
710

Shear strength¹ acc. to DIN EN 12797 in MPa
> 250

Density in g/cm³
8.5

 

 

1) Measured according to BrazeTec standard, compound 1.2210 & K10

Less Silver
–22 wt. %










Same
Strength

More Brazing Alloy
+7.6 %
 
Less
Costs

Quotation

.
Standard BrazeTec 5081

Composition in wt.%
Ag: 50 | Cu: 20 | Zn: 28 | Mn: – | NI: 2 | In: –

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.05

Overall impurity max. in wt.%
0.3

Melting range acc. to ISO 17672 in °C
660 – 715

Melting range acc. to DSC measurement in °C
670 – 730

Brazing temperature min. in °C
730

Shear strength¹ acc. to DIN EN 12797 in MPa
> 230

Density in g/cm³
9.2

 

 


Sandwich alloys, Cd free in comparison: BrazeTec Bluebraze 28/Cu vs. Standard BrazeTec 49/Cu

BrazeTec BlueBraze 28/Cu

Composition¹ in wt.%
Ag: 28 | Cu: 39.0 | Zn: 20 | Mn: 10 | Ni: 1 | In: 2

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.05

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
Not applicable, Why?

Melting range acc. to DSC measurement in °C
680 – 760

Brazing temperature min. in °C
710

Shear strength² acc. to DIN EN 12797 in MPa
> 150

Density in g/cm³
8.7

 

1) The data on the silver content of sandwich brazing alloys refer only to the brazing layer.

2) Measured according to BrazeTec standard, compound 1.2210 & K10;

Less Silver
–21 wt. %










Same
Strength

More Brazing Alloy
+3.1 %
 
Less
Costs

Quotation

.
Standard BrazeTec 49/Cu

Composition¹ in wt.%
Ag: 49 | Cu: 27.5 | Zn: 20.5 | Mn: 2.5 | NI: 0.5 | In: –

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.05

Overall impurity max. in wt.%
0.3

Melting range acc. to ISO 17672 in °C

Melting range acc. to DSC measurement in °C
670 – 720

Brazing temperature min. in °C
710

Shear strength² acc. to DIN EN 12797 in MPa
> 150

Density in g/cm³
9.0

 

 


Sandwich alloys, Cd free in comparison: BrazeTec Bluebraze 28/Cu plus zu Standard BrazeTec 49/Cu plus

BrazeTec BlueBraze 28/Cu plus

Composition¹ in wt.%
Ag: 28 | Cu: 39.0 | Zn: 20 | Mn: 10 | Ni: 1 | In: 2

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.05

Overall impurity max. in wt.%
0.15

Melting range acc. to ISO 17672 in °C
Not applicable, Why?

Melting range acc. to DSC measurement in °C
680 – 760

Brazing temperature min. in °C
710

Shear strength² acc. to DIN EN 12797 in MPa
> 180

Density in g/cm³
8.7

 

1) The data on the silver content of sandwich brazing alloys refer only to the brazing layer.

2) Measured according to BrazeTec standard, compound 1.2210 & K10

Less Silver
–21 wt. %










Same
Strength

More Brazing Alloy
+5.5 %
 
Less
Costs

Quaotation

.
Standard BrazeTec 49/Cu plus

Composition¹ in wt.%
Ag: 49 | Cu: 27.5 | Zn: 20.5 | Mn: 2.5 | NI: 0.5 | In: –

Permitted impurity max. in wt.%
Al: 0.001 | Bi: 0.030 | Cd: 0.010 | P: 0.008 |
Pb: 0.025 | Si: 0.05

Overall impurity max. in wt.%
0.3

Melting range acc. to ISO 17672 in °C

Melting range acc. to DSC measurement in °C
670 – 720

Brazing temperature min. in °C
710

Shear strength² acc. to DIN EN 12797 in MPa
> 180

Density in g/cm³
9.0

 

 


Address


Company*

Department

Gender*

Surename*

Name*

Phone*

E-mail*

Street

Nr.

Postal code

City

Comment*mandatory

Informations

Please send me your
BrazeTe BlueBraze brochures



Please contact me by

Phone E-mail

=
Security code.
Please enter the total sum.
 

Address


Company*

Department

Gender*

Surename*

Name*

Phone*

E-mail*

Street*

Nr.*

Postal code*

City*

Comment*mandatory

Traid Fair

Please send me tickets for the trade fair


Ligna, Hannover


I will visit you at the trade fair on:

Date, Approx. Time

Preferred Contact (if known)

=
Security code. Please enter the total sum.

 

Thank you!

We have received your message.

 

aim